Carbon meta-nanotubes : synthesis, properties, and applications için kapak resmi
Carbon meta-nanotubes : synthesis, properties, and applications
Başlık:
Carbon meta-nanotubes : synthesis, properties, and applications
ISBN:
9780470512821
Yayım Bilgisi:
Hoboken, N.J. : John Wiley & Sons , 2012.
Fiziksel Açıklamalar:
p. cm.
Genel Not:
Kaynakça var.

List of Contributors xiii Foreword xv List of Abbreviations xvii Acknowledgements xxi Introduction to the Meta-Nanotube Book 1 Marc Monthioux 1 Time for a Third-Generation of Carbon Nanotubes 1 2 Introducing Meta-Nanotubes 2 2.1 Doped Nanotubes (X:CNTs) 3 2.2 Functionalized Nanotubes (X-CNTs) 3 2.3 Decorated (Coated) Nanotubes (X /CNTs) 3 2.4 Filled Nanotubes (X@CNTs) 3 2.5 Heterogeneous Nanotubes (X*CNTs) 4 3 Introducing the Meta-Nanotube Book 4 References 5 1 Introduction to Carbon Nanotubes 7 Marc Monthioux 1.1 Introduction 7 1.2 One Word about Synthesizing Carbon Nanotubes 7 1.3 SWCNTs: The Perfect Structure 11 1.4 MWCNTs: The Amazing (Nano)Textural Variety 18 1.5 Electronic Structure 29 1.6 Some Properties of Carbon Nanotubes 31 1.7 Conclusion 36 References 36 2 Doped Carbon Nanotubes: (X:CNTs) 41 Alain Pe;nicaud, Pierre Petit and John E. Fischer 2.1 Introduction 41 2.1.1 Scope of this Chapter 41 2.1.2 A Few Definitions 42 2.1.3 Doped/Intercalated Carbon Allotropes – a Brief History 43 2.1.4 What Happens upon Doping SWCNTs? 48 2.2 n-Doping of Nanotubes 52 2.2.1 Synthetic Routes for Preparing Doped SWCNTs 52 2.2.2 Crystalline Structure and Chemical Composition of n-Doped Nanotubes 54 2.2.3 Modification of the Electronic Structure of SWCNTs upon Doping 59 2.2.4 Electrical Transport in Doped SWCNTs 61 2.2.5 Spectroscopic Evidence for n-Doping 65 2.2.6 Solutions of Reduced Nanotubes 72 2.3 p-Doping of Carbon Nanotubes 73 2.3.1 p-Doping of SWCNTs with Halogens 74 2.3.2 p-Doping with Acceptor Molecules 80 2.3.3 p-Doping of SWCNTs with FeCl3 -- 84 2.3.4 p-Doping of SWCNTs with SOCl2 -- 87 2.3.5 p-Doping of SWCNTs with Acids 87 2.3.6 p-Doping of SWCNTs with Superacids 91 2.3.7 p-Doping with other Oxidizing Agents 95 2.3.8 Diameter Selective Doping 96 2.4 Practical Applications of Doped Nanotubes 99 2.5 Conclusions, Perspectives 100 References 101 3 Functionalized Carbon Nanotubes (X-CNTs) 113 Ste;phane Campidelli, Stanislaus S. Wong and Maurizio Prato 3.1 Introduction 113 3.2 Functionalization Routes 113 3.2.1 Noncovalent Sidewall Functionalization of SWCNTs 114 3.2.2 Covalent Functionalization of SWCNTs 114 3.3 Properties and Applications 125 3.3.1 Electron Transfer Properties and Photovoltaic Applications 125 3.3.2 Chemical Sensors (FET-Based) 137 3.3.3 Opto-Electronic Devices (FET-Based) 139 3.3.4 Biosensors 145 3.4 Conclusion 149 References 150 4 Decorated (Coated) Carbon Nanotubes (X/CNTs) 163 Revathi R. Bacsa and Philippe Serp 4.1 Introduction 163 4.2 Metal-Nanotube Interactions – Theoretical Aspects 166 4.2.1 Curvature-Induced Effects 168 4.2.2 Effect of Defects and Vacancies on the Metal-Graphite Interactions 169 4.3 Carbon Nanotube Surface Activation 170 4.4 Methods for Carbon Nanotube Coating 171 4.4.1 Deposition from Solution 171 4.4.2 Self-Assembly Methods 178 4.4.3 Electro- and Electrophoretic Deposition 183 4.4.4 Deposition from Gas Phase 187 4.4.5 Nanoparticles Decorating Inner Surfaces of Carbon Nanotubes 190 4.5 Characterization of Decorated Nanotubes 191 4.5.1 Electron Microscopy and X-ray Diffraction 191 4.5.2 Spectroscopic Methods 192 4.5.3 Porosity and Surface Area 196 4.6 Applications of Decorated Nanotubes 196 4.6.1 Sensors 196 4.6.2 Catalysis 198 4.6.3 Fuel Cells 202 4.6.4 Hydrogen Storage 204 4.7 Decorated Nanotubes in Biology and Medicine 205 4.8 Conclusions and Perspectives 207 References 208 5 Filled Carbon Nanotubes 223 5.1 Presentation of Chapter 5 223 5a Filled Carbon Nanotubes: (X@CNTs) 225 Jeremy Sloan and Marc Monthioux 5a.1 Introduction 225 5a.2 Synthesis of X@CNTs 227 5a.2.1 A Glimpse at the Past 227 5a.2.2 The Expectations with Filling CNTs 228 5a.2.3 Filling Parameters, Routes and Mechanisms 229 5a.2.4 Materials for Filling 240 5a.2.5 Filling Mechanisms 245 5a.3 Behaviours and Properties 247 5a.3.1 Peculiar in-Tube Behaviour (Diffusion, Coalescence, Crystallization) 247 5a.3.2 Electronic Properties (Transport, Magnetism and Others) 252 5a.4 Applications (Demonstrated or Expected) 256 5a.4.1 Applications that Make Use of Mass Transport Properties 256 5a.4.2 Applications Arising as a Result of Filling 258 Acknowledgements 261 References 261 5b Fullerenes inside Carbon Nanotubes: The Peapods 273 F. Simon and Marc Monthioux 5b.1 Introduction 273 5b.2 The Discovery of Fullerene Peapods 274 5b.3 Classification of Peapods 277 5b.4 Synthesis and Behavior of Fullerene Peapods 279 5b.4.1 Synthesis of Peapods 279 5b.4.2 Behavior of Peapods under Various Treatments 289 5b.5 Properties of Peapods 295 5b.5.1 Structural Properties 295 5b.5.2 Peapod Band Structure from Theory and Experiment 298 5b.5.3 Transport Properties 301 5b.5.4 Optical Properties 302 5b.5.5 Vibrational Properties 303 5b.5.6 Magnetic Properties 305 5b.6 Applications of Peapods 308 5b.6.1 Demonstrated Applications 308 5b.6.2 Expected Applications 310 Acknowledgements 314 References 314 6 Heterogeneous Nanotubes (X*CNTs, X*BNNTs) 323 Dmitri Golberg, Mauricio Terrones 6.1 Overall Introduction 323 6.2 Pure BN Nanotubes 324 6.2.1 Introduction 324 6.2.2 Synthesis of BN Nanotubes 325 6.2.3 Morphology and Structure of BN Nanotubes 331 6.2.4 Properties of BN Nanotubes 337 6.2.5 Stability of BN Nanotubes to High-Energy Irradiation 346 6.2.6 Boron Nitride Meta-Nanotubes 346 6.2.7 Other BN Nanomaterials 353 6.2.8 Challenging Applications 355 6.3 BxCyNz -- Nanotubes and Nanofibers 359 6.3.1 Tuning the Electronic Structure with C-Substituted BN Nanotubes 359 6.3.2 Production and Characterization of BxCyNz Nanotubes and Nanofibers 362 6.4 B-Substituted or N-Substituted Carbon Nanotubes 368 6.4.1 Substituting Carbon Nanotubes with B or N 368 6.4.2 Synthesis Strategies for Producing Bor N-Substituted CNTs 370 6.4.3 Morphology and Structure of Substituted CNTs 374 6.4.4 Properties of Substituted CNTs 379 6.4.5 Applications of Substituted CNTs 385 6.5 Perspectives and Future Outlook 392 Acknowledgements 394 References 395 Index
Özet:
List of Contributors xiii Foreword xv List of Abbreviations xvii Acknowledgements xxi Introduction to the Meta-Nanotube Book 1 Marc Monthioux 1 Time for a Third-Generation of Carbon Nanotubes 1 2 Introducing Meta-Nanotubes 2 2.1 Doped Nanotubes (X:CNTs) 3 2.2 Functionalized Nanotubes (X-CNTs) 3 2.3 Decorated (Coated) Nanotubes (X /CNTs) 3 2.4 Filled Nanotubes (X@CNTs) 3 2.5 Heterogeneous Nanotubes (X*CNTs) 4 3 Introducing the Meta-Nanotube Book 4 References 5 1 Introduction to Carbon Nanotubes 7 Marc Monthioux 1.1 Introduction 7 1.2 One Word about Synthesizing Carbon Nanotubes 7 1.3 SWCNTs: The Perfect Structure 11 1.4 MWCNTs: The Amazing (Nano)Textural Variety 18 1.5 Electronic Structure 29 1.6 Some Properties of Carbon Nanotubes 31 1.7 Conclusion 36 References 36 2 Doped Carbon Nanotubes: (X:CNTs) 41 Alain Pe;nicaud, Pierre Petit and John E. Fischer 2.1 Introduction 41 2.1.1 Scope of this Chapter 41 2.1.2 A Few Definitions 42 2.1.3 Doped/Intercalated Carbon Allotropes – a Brief History 43 2.1.4 What Happens upon Doping SWCNTs? 48 2.2 n-Doping of Nanotubes 52 2.2.1 Synthetic Routes for Preparing Doped SWCNTs 52 2.2.2 Crystalline Structure and Chemical Composition of n-Doped Nanotubes 54 2.2.3 Modification of the Electronic Structure of SWCNTs upon Doping 59 2.2.4 Electrical Transport in Doped SWCNTs 61 2.2.5 Spectroscopic Evidence for n-Doping 65 2.2.6 Solutions of Reduced Nanotubes 72 2.3 p-Doping of Carbon Nanotubes 73 2.3.1 p-Doping of SWCNTs with Halogens 74 2.3.2 p-Doping with Acceptor Molecules 80 2.3.3 p-Doping of SWCNTs with FeCl3 -- 84 2.3.4 p-Doping of SWCNTs with SOCl2 -- 87 2.3.5 p-Doping of SWCNTs with Acids 87 2.3.6 p-Doping of SWCNTs with Superacids 91 2.3.7 p-Doping with other Oxidizing Agents 95 2.3.8 Diameter Selective Doping 96 2.4 Practical Applications of Doped Nanotubes 99 2.5 Conclusions, Perspectives 100 References 101 3 Functionalized Carbon Nanotubes (X-CNTs) 113 Ste;phane Campidelli, Stanislaus S. Wong and Maurizio Prato 3.1 Introduction 113 3.2 Functionalization Routes 113 3.2.1 Noncovalent Sidewall Functionalization of SWCNTs 114 3.2.2 Covalent Functionalization of SWCNTs 114 3.3 Properties and Applications 125 3.3.1 Electron Transfer Properties and Photovoltaic Applications 125 3.3.2 Chemical Sensors (FET-Based) 137 3.3.3 Opto-Electronic Devices (FET-Based) 139 3.3.4 Biosensors 145 3.4 Conclusion 149 References 150 4 Decorated (Coated) Carbon Nanotubes (X/CNTs) 163 Revathi R. Bacsa and Philippe Serp 4.1 Introduction 163 4.2 Metal-Nanotube Interactions – Theoretical Aspects 166 4.2.1 Curvature-Induced Effects 168 4.2.2 Effect of Defects and Vacancies on the Metal-Graphite Interactions 169 4.3 Carbon Nanotube Surface Activation 170 4.4 Methods for Carbon Nanotube Coating 171 4.4.1 Deposition from Solution 171 4.4.2 Self-Assembly Methods 178 4.4.3 Electro- and Electrophoretic Deposition 183 4.4.4 Deposition from Gas Phase 187 4.4.5 Nanoparticles Decorating Inner Surfaces of Carbon Nanotubes 190 4.5 Characterization of Decorated Nanotubes 191 4.5.1 Electron Microscopy and X-ray Diffraction 191 4.5.2 Spectroscopic Methods 192 4.5.3 Porosity and Surface Area 196 4.6 Applications of Decorated Nanotubes 196 4.6.1 Sensors 196 4.6.2 Catalysis 198 4.6.3 Fuel Cells 202 4.6.4 Hydrogen Storage 204 4.7 Decorated Nanotubes in Biology and Medicine 205 4.8 Conclusions and Perspectives 207 References 208 5 Filled Carbon Nanotubes 223 5.1 Presentation of Chapter 5 223 5a Filled Carbon Nanotubes: (X@CNTs) 225 Jeremy Sloan and Marc Monthioux 5a.1 Introduction 225 5a.2 Synthesis of X@CNTs 227 5a.2.1 A Glimpse at the Past 227 5a.2.2 The Expectations with Filling CNTs 228 5a.2.3 Filling Parameters, Routes and Mechanisms 229 5a.2.4 Materials for Filling 240 5a.2.5 Filling Mechanisms 245 5a.3 Behaviours and Properties 247 5a.3.1 Peculiar in-Tube Behaviour (Diffusion, Coalescence, Crystallization) 247 5a.3.2 Electronic Properties (Transport, Magnetism and Others) 252 5a.4 Applications (Demonstrated or Expected) 256 5a.4.1 Applications that Make Use of Mass Transport Properties 256 5a.4.2 Applications Arising as a Result of Filling 258 Acknowledgements 261 References 261 5b Fullerenes inside Carbon Nanotubes: The Peapods 273 F. Simon and Marc Monthioux 5b.1 Introduction 273 5b.2 The Discovery of Fullerene Peapods 274 5b.3 Classification of Peapods 277 5b.4 Synthesis and Behavior of Fullerene Peapods 279 5b.4.1 Synthesis of Peapods 279 5b.4.2 Behavior of Peapods under Various Treatments 289 5b.5 Properties of Peapods 295 5b.5.1 Structural Properties 295 5b.5.2 Peapod Band Structure from Theory and Experiment 298 5b.5.3 Transport Properties 301 5b.5.4 Optical Properties 302 5b.5.5 Vibrational Properties 303 5b.5.6 Magnetic Properties 305 5b.6 Applications of Peapods 308 5b.6.1 Demonstrated Applications 308 5b.6.2 Expected Applications 310 Acknowledgements 314 References 314 6 Heterogeneous Nanotubes (X*CNTs, X*BNNTs) 323 Dmitri Golberg, Mauricio Terrones 6.1 Overall Introduction 323 6.2 Pure BN Nanotubes 324 6.2.1 Introduction 324 6.2.2 Synthesis of BN Nanotubes 325 6.2.3 Morphology and Structure of BN Nanotubes 331 6.2.4 Properties of BN Nanotubes 337 6.2.5 Stability of BN Nanotubes to High-Energy Irradiation 346 6.2.6 Boron Nitride Meta-Nanotubes 346 6.2.7 Other BN Nanomaterials 353 6.2.8 Challenging Applications 355 6.3 BxCyNz -- Nanotubes and Nanofibers 359 6.3.1 Tuning the Electronic Structure with C-Substituted BN Nanotubes 359 6.3.2 Production and Characterization of BxCyNz Nanotubes and Nanofibers 362 6.4 B-Substituted or N-Substituted Carbon Nanotubes 368 6.4.1 Substituting Carbon Nanotubes with B or N 368 6.4.2 Synthesis Strategies for Producing Bor N-Substituted CNTs 370 6.4.3 Morphology and Structure of Substituted CNTs 374 6.4.4 Properties of Substituted CNTs 379 6.4.5 Applications of Substituted CNTs 385 6.5 Perspectives and Future Outlook 392 Acknowledgements 394 References 395 Index