Simplified mechanics & strength of materials için kapak resmi
Simplified mechanics & strength of materials
Başlık:
Simplified mechanics & strength of materials
ISBN:
9780471400523
Basım Bilgisi:
6.bs
Yayım Bilgisi:
New York : J. Wiley , 2002.
Fiziksel Açıklamalar:
xiv, 416 s. : res. ; 22 cm.
Dizi Bildirim:
Parker-Ambrose series of simplified design guides
Genel Not:
Kaynakça var.

Preface to the Sixth Edition. Preface to the First Edition. Introduction. Structural Mechanics. Units of Measurement. Accuracy of Computations. Symbols. Nomenclature. 1. Structures: Purpose and Function. 1.1 Loads. 1.2 Special Considerations for Loads. 1.3 Generation of Structures. 1.4 Reactions. 1.5 Internal Forces. 1.6 Functional Requirements of Structures. 1.7 Types of Internal Force. 1.8 Stress and Strain. 1.9 Dynamic Effects. 1.10 Design for Structural Response. 2. Forces and Force Actions. 2.1 Loads and Resistance. 2.2 Forces and Stresses. 2.3 Types of Forces. 2.4 Vectors. 2.5 Properties of Forces. 2.6 Motion. 2.7 Force Components and Combinations. 2.8 Graphical Analysis of Forces. 2.9 Investigation of Force Actions. 2.10 Friction. 2.11 Moments. 2.12 Forces on a Beam. 3. Analysis of Trusses. 3.1 Graphical Analysis of Trusses. 3.2 Algebraic Analysis of Trusses. 3.3 The Method of Sections. 4. Analysis of Beams. 4.1 Types of Beams. 4.2 Loads and Reactions. 4.3 Shear in Beams. 4.4 Bending Moments in Beams. 4.5 Sense of Bending in Beams. 4.6 Cantilever Beams. 4.11 Tabulated Values for Beam Behavior. 5. Continuous and Restrained Beams. 5.1 Bending Moments for Continuous Beams. 5.2 Restrained Beams. 5.3 Beams with Internal Pins. 5.4 Approximate Analysis of Continuous Beams. 6. Retaining Walls. 6.1 Horizontal Earth Pressure. 6.2 Stability of Retaining Walls. 6.3 Vertical Soil Pressure. 7. Rigid Frames. 7.1 Cantilever Frames. 7.2 Single-Span Frames. 8. Noncoplanar Force Systems. 8.1 Concurrent Systems. 8.2 Parallel Systems. 8.3 General Noncoplanar Systems. 9. Properties of Sections. 9.1 Centroids. 9.2 Moment of Inertia. 9.3 Transferring Moments of Inertia. 9.4 Miscellaneous Properties. 9.5 Tables of Properties of Sections. 10. Stress and Deformation. 10.1 Mechanical Properties of Materials. 10.2 Design Use of Direct Stress. 10.3 Deformation and Stress: Relations and Issues. 10.4 Inelastic and Nonlinear Behavior. 11. Stress and Strain in Beams. 11.1 Development of Bending Resistance. 11.2 Investigation of Beams. 11.3 Computation of Safe Loads. 11.4 Design of Beams for Flexure. 11.5 Shear Stress in Beams. 11.6 Shear in Steel Beams. 11.7 Flitched Beams. 11.8 Deflection of Beams. 11.9 Deflection Computations. 11.10 Plastic Behavior in Steel Beams. 12. Compression Members. 12.1 Slenderness Effects. 12.2 Wood Columns. 12.3 Steel Columns. 13. Combined Forces and Stresses. 13.1 Combined Action: Tension Plus Bending. 13.2 Combined Action: Compression Plus Bending. 13.3 Development of Shear Stress. 13.4 Stress on an Oblique Section. 13.5 Combined Direct and Shear Stresses. 14. Connections for Structural Steel. 14.1 Bolted Connections. 14.2 Design of a Bolted Connection. 14.3 Welded Connections. 15. Reinforced Concrete Beams. 15.1 General Considerations. 15.2 Flexure: Stress Method. 15.3 General Application of Strength Methods. 15.4 Flexure: Strength Method. 15.5 T-Beams. 15.6 Shear in Concrete Beams. 15.7 Design for Shear in Concrete Beams. References. Answers to Selected Exercise Problems. Index.
Özet:
Preface to the Sixth Edition. Preface to the First Edition. Introduction. Structural Mechanics. Units of Measurement. Accuracy of Computations. Symbols. Nomenclature. 1. Structures: Purpose and Function. 1.1 Loads. 1.2 Special Considerations for Loads. 1.3 Generation of Structures. 1.4 Reactions. 1.5 Internal Forces. 1.6 Functional Requirements of Structures. 1.7 Types of Internal Force. 1.8 Stress and Strain. 1.9 Dynamic Effects. 1.10 Design for Structural Response. 2. Forces and Force Actions. 2.1 Loads and Resistance. 2.2 Forces and Stresses. 2.3 Types of Forces. 2.4 Vectors. 2.5 Properties of Forces. 2.6 Motion. 2.7 Force Components and Combinations. 2.8 Graphical Analysis of Forces. 2.9 Investigation of Force Actions. 2.10 Friction. 2.11 Moments. 2.12 Forces on a Beam. 3. Analysis of Trusses. 3.1 Graphical Analysis of Trusses. 3.2 Algebraic Analysis of Trusses. 3.3 The Method of Sections. 4. Analysis of Beams. 4.1 Types of Beams. 4.2 Loads and Reactions. 4.3 Shear in Beams. 4.4 Bending Moments in Beams. 4.5 Sense of Bending in Beams. 4.6 Cantilever Beams. 4.11 Tabulated Values for Beam Behavior. 5. Continuous and Restrained Beams. 5.1 Bending Moments for Continuous Beams. 5.2 Restrained Beams. 5.3 Beams with Internal Pins. 5.4 Approximate Analysis of Continuous Beams. 6. Retaining Walls. 6.1 Horizontal Earth Pressure. 6.2 Stability of Retaining Walls. 6.3 Vertical Soil Pressure. 7. Rigid Frames. 7.1 Cantilever Frames. 7.2 Single-Span Frames. 8. Noncoplanar Force Systems. 8.1 Concurrent Systems. 8.2 Parallel Systems. 8.3 General Noncoplanar Systems. 9. Properties of Sections. 9.1 Centroids. 9.2 Moment of Inertia. 9.3 Transferring Moments of Inertia. 9.4 Miscellaneous Properties. 9.5 Tables of Properties of Sections. 10. Stress and Deformation. 10.1 Mechanical Properties of Materials. 10.2 Design Use of Direct Stress. 10.3 Deformation and Stress: Relations and Issues. 10.4 Inelastic and Nonlinear Behavior. 11. Stress and Strain in Beams. 11.1 Development of Bending Resistance. 11.2 Investigation of Beams. 11.3 Computation of Safe Loads. 11.4 Design of Beams for Flexure. 11.5 Shear Stress in Beams. 11.6 Shear in Steel Beams. 11.7 Flitched Beams. 11.8 Deflection of Beams. 11.9 Deflection Computations. 11.10 Plastic Behavior in Steel Beams. 12. Compression Members. 12.1 Slenderness Effects. 12.2 Wood Columns. 12.3 Steel Columns. 13. Combined Forces and Stresses. 13.1 Combined Action: Tension Plus Bending. 13.2 Combined Action: Compression Plus Bending. 13.3 Development of Shear Stress. 13.4 Stress on an Oblique Section. 13.5 Combined Direct and Shear Stresses. 14. Connections for Structural Steel. 14.1 Bolted Connections. 14.2 Design of a Bolted Connection. 14.3 Welded Connections. 15. Reinforced Concrete Beams. 15.1 General Considerations. 15.2 Flexure: Stress Method. 15.3 General Application of Strength Methods. 15.4 Flexure: Strength Method. 15.5 T-Beams. 15.6 Shear in Concrete Beams. 15.7 Design for Shear in Concrete Beams. References. Answers to Selected Exercise Problems. Index.