Diagnostic techniques in genetics için kapak resmi
Diagnostic techniques in genetics
Başlık:
Diagnostic techniques in genetics
ISBN:
9780470870242
Yayım Bilgisi:
Chichester : Wiley , 2006.
Fiziksel Açıklamalar:
xi, 256 s. : şkl. ; 25 cm.
Genel Not:
Kaynakça var.

Contents Preface ix List of Contributors xiii 1 Techniques and Tools inMolecular Biology Used in Genetic Diagnosis 1 1.1 Nucleic acids 1 1.2 The different types of genetic material studied 4 1.2.1 DNA origins and types 4 1.2.2 RNA and cDNA 4 1.3 The enzymatic tools for in vitro treatment of DNA 6 1.4 DNA fragmentation and study of the fragments 6 1.4.1 DNA fragmentation 6 1.4.2 Separation of DNA fragments by electrophoresis and membrane transfer 9 1.5 Selective amplification of a nucleotide sequence 13 1.5.1 DNA sequence amplification by PCR 14 1.5.2 RNA amplification as cDNA by RT?PCR 18 1.5.3 Quantitative PCR methods 19 1.5.4 RNA or DNA isothermic NASBA r_amplification 22 1.6 DNA fragment ligation: recombinant DNA and cloning 24 1.6.1 Operating mode of ligases 24 1.6.2 Recombinant DNA 24 1.6.3 DNA cloning 24 1.6.4 Cloning vectors 26 1.7 DNA fragment sequencing 28 1.7.1 Principle of the Sanger method: the sequencing reaction 28 1.7.2 Reading of the sequencing reaction products 29 1.8 Modification of the sequence of a DNA fragment: site-directed mutagenesis 34 1.9 Molecular hybridization techniques and applications 35 1.9.1 Introduction 35 1.9.2 Probes, labelling and reading of the signal 35 1.9.3 FISH and in situ PCR 37 1.9.4 Detection and dosage methods using signal amplification 38 1.9.5 Southern blot hybridization 39 1.9.6 ASO techniques: dot blot and reverse-dot blot 40 1.9.7 ARMS and OLA techniques 43 1.9.8 Definition, analysis and applications of RFLPs 47 1.9.9 VNTRs and microsatellites 50 1.9.10 Single nucleotide polymorphism markers 51 1.9.11 DNA microarrays 51 1.10 Other techniques to study allelic diversity 55 1.10.1 Introduction 55 1.10.2 Single-strand conformation polymorphism (SSCP) 55 1.10.3 Denaturing gradient gel electrophoresis (DGGE) 56 1.10.4 Searching for polymorphisms using DHPLC 57 1.10.5 Protein truncation test (PTT) 58 2 The Diagnosis of Inherited Diseases 61 2.1 Introduction 61 2.1.1 Different mutation classes 62 2.1.2 Dominance and recessivity are explained by molecular pathology 63 2.1.3 Genetic heterogeneity can be explained by molecular pathology 65 2.2 Example diagnoses for autosomal diseases 67 2.2.1 Cystic fibrosis 67 2.2.2 Haemochromatosis 84 2.2.3 Thalassaemias and drepanocytosis 90 2.3 Example diagnoses for X-linked diseases 100 2.3.1 Fragile X syndrome 100 2.3.2 Genetic diagnosis of haemophilia A and B 108 2.3.3 Molecular diagnosis of Duchenne and Becker muscular dystrophies 115 2.4 Neurodegenerative diseases 127 2.4.1 Introduction 127 2.4.2 Polyglutamine neurodegenerative disorders 127 2.4.3 Pathophysiology of polyglutamine disorders 132 2.5 References and Bibliography 135 2.5.1 References 135 2.5.2 Bibliography 135 3 Molecular Diagnosis in Oncology 139 3.1 General introduction 139 3.2 Cellular pathways targeted by the tumour process 140 3.3 Types of genetic alteration leading to cancer 142 3.3.1 Introduction 142 3.3.2 Activating mutations 142 3.3.3 Inactivating mutations 142 3.4 Alteration origins: the role of the repair genes 143 3.5 Benefits of molecular studies to patient healthcare 143 3.5.1 Chronic myeloid leukaemia (CML) 145 3.5.2 Acute myeloid leukaemia (AML) 145 3.5.3 Burkitt?s lymphoma 148 3.5.4 Anatomopathologic diagnosis, therapy and prognosis 148 3.6 Genetic predisposition to cancers 149 3.6.1 Introduction 149 3.6.2 Genetic predispositions to cancers identified so far 150 3.7 Genetic tests for cancer predisposition 154 3.7.1 Introduction 154 3.7.2 Help taking care of at-risk individuals: multiple endocrine neoplasia type 2 156 3.7.3 Some genetic tests are of limited interest: search for a constitutive mutation in the TP53 gene 157 3.7.4 Molecular genetic testing for breast cancer predisposition through the search for mutations in the BRCA genes 158 3.8 Conclusions and perspectives 159 3.9 References 161 4 Applications ofMolecular Biology to Cytogenetics 163 4.1 Introduction 163 4.2 Molecular diagnosis of anomalies in the number of chromosomes 163 4.2.1 Introduction 163 4.2.2 Diagnosis using fluorescence in situ hybridization 165 4.2.3 Molecular biology diagnosis 165 4.3 Chromosomal microdeletions 169 4.3.1 Introduction 169 4.3.2 Mechanisms for the generation of microdeletions and microduplications 172 4.3.3 Methods to detect chromosomal microdeletions 173 4.4 Uniparental disomies 174 4.5 Conclusions and perspectives 177 4.6 References 177 5 Screening and Identification of Pathogenic and Exogenic Agents 179 5.1 Clinical virology 179 5.1.1 Introduction 179 5.1.2 Classical methods of analysing viral infections 180 5.1.3 Analysis methods for viral infections using molecular biology 183 5.1.4 Conclusions 192 5.2 Clinical bacteriology 193 5.2.1 Introduction 193 5.2.2 Bacterial taxonomy 193 5.2.3 Bacteriological diagnosis 194 5.2.4 Molecular detection of antibiotic resistance 197 5.2.5 Bacterial typing 197 5.3 Detection of GMOs 201 5.3.1 What is a GMO? 202 5.3.2 Regulations 203 5.3.3 Detection of GMOs and their derived products 204 5.3.4 Harmonization of analysis methods 210 5.3.5 Conclusions 210 5.4 References and Bibliography 210 5.4.1 References 210 5.4.2 Bibliography 211 6 Identification Using Genetic Fingerprints 213 6.1 Introduction 213 6.2 Genetic fingerprints by the analysis of nuclear DNA 213 6.2.1 The molecular and technological basis of the scientific approach 214 6.2.2 The mathematical basis of the scientific approach 220 6.2.3 Applications 222 6.2.4 A special case: the Y chromosome sequence 225 6.3 Genetic fingerprints with mitochondrial DNA 226 6.3.1 Introduction 226 6.3.2 Specific characteristics of mitochondrial DNA 226 6.3.3 Utility of mitochondrial DNA 227 6.3.4 Methods and techniques 227 6.3.5 Heteroplasmy 229 6.3.6 Application to the identification of cadavers 230 6.3.7 Application to the identification of hair 232 6.3.8 Application to the discrimination between man and animal, or between animals 232 6.3.9 Conclusions 232 6.4 Society facing the question of genetic fingerprint files 233 6.4.1 Introduction in the form of an anecdote 233 6.4.2 Creation and maintenance of genetic fingerprint files 233 6.5 Conclusions 235 6.6 Bibliography 235 7 Molecular Genetics and Populations 237 7.1 Hardy?Weinberg equilibrium and measures of genetic diversity 237 7.1.1 Analysis of recessive diseases 237 7.1.2 Analysis of dominant diseases 239 7.1.3 Analysis of sex-linked diseases 241 7.2 Multiple alleles and informativity 241 7.3 Selection?mutation balance and Haldane?s rule 243 7.4 Diagnosis with genetic testing: cystic fibrosis ? an academic case 244 7.5 Gametic disequilibrium 248 7.5.1 Allele frequencies and gamete frequencies 248 7.5.2 Gametic equilibrium and disequilibrium 248 7.5.3 Origin of gametic disequilibrium 249 7.5.4 Changes in gametic disequilibrium or linkage disequilibrium 251 7.6 Reference and Bibliography 252 7.6.1 Reference 252 7.6.2 Bibliography 252 Index 253
Özet:
Contents Preface ix List of Contributors xiii 1 Techniques and Tools inMolecular Biology Used in Genetic Diagnosis 1 1.1 Nucleic acids 1 1.2 The different types of genetic material studied 4 1.2.1 DNA origins and types 4 1.2.2 RNA and cDNA 4 1.3 The enzymatic tools for in vitro treatment of DNA 6 1.4 DNA fragmentation and study of the fragments 6 1.4.1 DNA fragmentation 6 1.4.2 Separation of DNA fragments by electrophoresis and membrane transfer 9 1.5 Selective amplification of a nucleotide sequence 13 1.5.1 DNA sequence amplification by PCR 14 1.5.2 RNA amplification as cDNA by RT?PCR 18 1.5.3 Quantitative PCR methods 19 1.5.4 RNA or DNA isothermic NASBA r_amplification 22 1.6 DNA fragment ligation: recombinant DNA and cloning 24 1.6.1 Operating mode of ligases 24 1.6.2 Recombinant DNA 24 1.6.3 DNA cloning 24 1.6.4 Cloning vectors 26 1.7 DNA fragment sequencing 28 1.7.1 Principle of the Sanger method: the sequencing reaction 28 1.7.2 Reading of the sequencing reaction products 29 1.8 Modification of the sequence of a DNA fragment: site-directed mutagenesis 34 1.9 Molecular hybridization techniques and applications 35 1.9.1 Introduction 35 1.9.2 Probes, labelling and reading of the signal 35 1.9.3 FISH and in situ PCR 37 1.9.4 Detection and dosage methods using signal amplification 38 1.9.5 Southern blot hybridization 39 1.9.6 ASO techniques: dot blot and reverse-dot blot 40 1.9.7 ARMS and OLA techniques 43 1.9.8 Definition, analysis and applications of RFLPs 47 1.9.9 VNTRs and microsatellites 50 1.9.10 Single nucleotide polymorphism markers 51 1.9.11 DNA microarrays 51 1.10 Other techniques to study allelic diversity 55 1.10.1 Introduction 55 1.10.2 Single-strand conformation polymorphism (SSCP) 55 1.10.3 Denaturing gradient gel electrophoresis (DGGE) 56 1.10.4 Searching for polymorphisms using DHPLC 57 1.10.5 Protein truncation test (PTT) 58 2 The Diagnosis of Inherited Diseases 61 2.1 Introduction 61 2.1.1 Different mutation classes 62 2.1.2 Dominance and recessivity are explained by molecular pathology 63 2.1.3 Genetic heterogeneity can be explained by molecular pathology 65 2.2 Example diagnoses for autosomal diseases 67 2.2.1 Cystic fibrosis 67 2.2.2 Haemochromatosis 84 2.2.3 Thalassaemias and drepanocytosis 90 2.3 Example diagnoses for X-linked diseases 100 2.3.1 Fragile X syndrome 100 2.3.2 Genetic diagnosis of haemophilia A and B 108 2.3.3 Molecular diagnosis of Duchenne and Becker muscular dystrophies 115 2.4 Neurodegenerative diseases 127 2.4.1 Introduction 127 2.4.2 Polyglutamine neurodegenerative disorders 127 2.4.3 Pathophysiology of polyglutamine disorders 132 2.5 References and Bibliography 135 2.5.1 References 135 2.5.2 Bibliography 135 3 Molecular Diagnosis in Oncology 139 3.1 General introduction 139 3.2 Cellular pathways targeted by the tumour process 140 3.3 Types of genetic alteration leading to cancer 142 3.3.1 Introduction 142 3.3.2 Activating mutations 142 3.3.3 Inactivating mutations 142 3.4 Alteration origins: the role of the repair genes 143 3.5 Benefits of molecular studies to patient healthcare 143 3.5.1 Chronic myeloid leukaemia (CML) 145 3.5.2 Acute myeloid leukaemia (AML) 145 3.5.3 Burkitt?s lymphoma 148 3.5.4 Anatomopathologic diagnosis, therapy and prognosis 148 3.6 Genetic predisposition to cancers 149 3.6.1 Introduction 149 3.6.2 Genetic predispositions to cancers identified so far 150 3.7 Genetic tests for cancer predisposition 154 3.7.1 Introduction 154 3.7.2 Help taking care of at-risk individuals: multiple endocrine neoplasia type 2 156 3.7.3 Some genetic tests are of limited interest: search for a constitutive mutation in the TP53 gene 157 3.7.4 Molecular genetic testing for breast cancer predisposition through the search for mutations in the BRCA genes 158 3.8 Conclusions and perspectives 159 3.9 References 161 4 Applications ofMolecular Biology to Cytogenetics 163 4.1 Introduction 163 4.2 Molecular diagnosis of anomalies in the number of chromosomes 163 4.2.1 Introduction 163 4.2.2 Diagnosis using fluorescence in situ hybridization 165 4.2.3 Molecular biology diagnosis 165 4.3 Chromosomal microdeletions 169 4.3.1 Introduction 169 4.3.2 Mechanisms for the generation of microdeletions and microduplications 172 4.3.3 Methods to detect chromosomal microdeletions 173 4.4 Uniparental disomies 174 4.5 Conclusions and perspectives 177 4.6 References 177 5 Screening and Identification of Pathogenic and Exogenic Agents 179 5.1 Clinical virology 179 5.1.1 Introduction 179 5.1.2 Classical methods of analysing viral infections 180 5.1.3 Analysis methods for viral infections using molecular biology 183 5.1.4 Conclusions 192 5.2 Clinical bacteriology 193 5.2.1 Introduction 193 5.2.2 Bacterial taxonomy 193 5.2.3 Bacteriological diagnosis 194 5.2.4 Molecular detection of antibiotic resistance 197 5.2.5 Bacterial typing 197 5.3 Detection of GMOs 201 5.3.1 What is a GMO? 202 5.3.2 Regulations 203 5.3.3 Detection of GMOs and their derived products 204 5.3.4 Harmonization of analysis methods 210 5.3.5 Conclusions 210 5.4 References and Bibliography 210 5.4.1 References 210 5.4.2 Bibliography 211 6 Identification Using Genetic Fingerprints 213 6.1 Introduction 213 6.2 Genetic fingerprints by the analysis of nuclear DNA 213 6.2.1 The molecular and technological basis of the scientific approach 214 6.2.2 The mathematical basis of the scientific approach 220 6.2.3 Applications 222 6.2.4 A special case: the Y chromosome sequence 225 6.3 Genetic fingerprints with mitochondrial DNA 226 6.3.1 Introduction 226 6.3.2 Specific characteristics of mitochondrial DNA 226 6.3.3 Utility of mitochondrial DNA 227 6.3.4 Methods and techniques 227 6.3.5 Heteroplasmy 229 6.3.6 Application to the identification of cadavers 230 6.3.7 Application to the identification of hair 232 6.3.8 Application to the discrimination between man and animal, or between animals 232 6.3.9 Conclusions 232 6.4 Society facing the question of genetic fingerprint files 233 6.4.1 Introduction in the form of an anecdote 233 6.4.2 Creation and maintenance of genetic fingerprint files 233 6.5 Conclusions 235 6.6 Bibliography 235 7 Molecular Genetics and Populations 237 7.1 Hardy?Weinberg equilibrium and measures of genetic diversity 237 7.1.1 Analysis of recessive diseases 237 7.1.2 Analysis of dominant diseases 239 7.1.3 Analysis of sex-linked diseases 241 7.2 Multiple alleles and informativity 241 7.3 Selection?mutation balance and Haldane?s rule 243 7.4 Diagnosis with genetic testing: cystic fibrosis ? an academic case 244 7.5 Gametic disequilibrium 248 7.5.1 Allele frequencies and gamete frequencies 248 7.5.2 Gametic equilibrium and disequilibrium 248 7.5.3 Origin of gametic disequilibrium 249 7.5.4 Changes in gametic disequilibrium or linkage disequilibrium 251 7.6 Reference and Bibliography 252 7.6.1 Reference 252 7.6.2 Bibliography 252 Index 253